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Abstract

We describe an explicit construction of galoisian Stokes operators for irregular linear q-difference
equations. These operators are parameterized by the points of an elliptic curve minus a finite set of sin-
gularities. Taking residues at these singularities, one gets q-analogues of alien derivations which “freely”
generate the Lie algebra of the Stokes subgroup of the Galois group.

1 Introduction

In this paper we return to the local analytic classification of q-difference modules. In [23] we gave such a
classification in Birkhoff style [2, 3], using normal forms and index theorems. The classification of [23] is
complete in the “integral slope case”. (One could extend it to the general case using some results of [12].)
In [29] (cf. also [22], [24]) appears another version of our classification, using non abelian cohomology of
sheaves on an elliptic curve.

Here our aim is to give a new version of our classification, based upon a “fundamental group” and its
finite dimensional representations, in the style of the Riemann-Hilbert correspondence for linear differen-
tial equations. At some abstract level, such a classification exists: the fundamental group is the tannakian
Galois group of the tannakian category of our q-modules. But we want more information: our essential
aim is to get a smaller fundamental group (as small as possible !) which is Zariski dense in the tannakian
Galois group and to describe it explicitly. (As a byproduct, we shall get finally a complete description of
the tannakian Galois group itself.) It is important to notice that the tannakian Galois group is an algebraic
object, but that the construction of the smaller group is based upon transcendental techniques (topology and
complex analysis).

As in the differential case, the construction of the fundamental group is a Russian-dolls construction
using semi-direct products (heuristically, going from interior to exterior, each new “slice of infinitesimal
neighborhood” of the origin (each “scale”) corresponds to an invariant subgroup in a new semi-direct prod-
uct). At the end there is a fascinating parallel between the differential and the q-difference case. However,
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it has been impossible (for us) to mimick the differential approach (essentially based upon the concept of
solutions); instead, we shall follow a new path. In order to understand our approach and our results in the
q-difference case, it can be useful (even if not indispensable) to have some ideas about what happens in
the differential case (in this case the “fundamental group” is the wild fundamental group introduced by the
first author). In this introduction, we shall detail only the simplest case, the local case of regular singular
linear differential equations, it will be our basic model. For the convenience of the reader, we shall recall
the general differential situation in the next section (without proof, but with precise references); we shall
insist on the underlying geometric ideas. The reader can choose to skip this section if he prefers (we shall
not use the corresponding results in our paper, only their flavour).

We shall use tannakian categories as an essential tool (cf. [5], [31], §6, page 67). First recall some basic
facts. Assume E is a neutral tannakian category, with fiber functor ω (to the category of C-vector spaces).
Then Aut⊗(ω) has a structure of complex pro-algebraic affine group scheme; we shall call it the tannakian
group of the tannakian category E . The category E is isomorphic to the category of finite dimensional rep-
resentations 1 of Aut⊗(ω) (by definition, such a representation factors through a representation of one of the
algebraic quotients). Conversely, if G is a complex pro-algebraic group, its category of complex representa-
tions RepC(G) is a neutral tannakian category with a natural fiber functor ωG (the obvious forgetful functor)
and G = Aut⊗(ωG,RepC(G)); the complex space aut⊗(ωG,RepC(G)) of Lie-like⊗-endomorphisms of the
fiber functor ωG is the Lie-algebra of Aut⊗(ωG,RepC(G)).

Assuming that Γ is a finitely generated group, a pro-algebraic completion of Γ is, by definition, a uni-
versal pair (ιal ,Γal) where ιal : Γ→ Γal is a group homomorphism from Γ to a pro-algebraic group Γal .
It is unique up to an isomorphism of proalgebraic groups. A finite dimensional representation of Γ clearly
factors through a proalgebraic completion of Γ. We can get a pro-algebraic completion of Γ from the
tannakian mechanism: RepC(Γ) is a neutral tannakian category with a natural fiber functor (the obvious
forgetful functor) ω, and the group G = Aut⊗(ω,RepC(Γ)) is a pro-algebraic completion of Γ. The groups
Γ and G have the same representations, more precisely the natural homomorphism of groups Γ→ G in-
duces an isomorphism of tannakian categories: RepC(G)→ RepC(Γ). We shall encounter below similar
situations associated to different classification problems (in a little more general setting: Γ will not be in
general a finitely generated group).

The first example (our baby example) is the category of local meromorphic regular-singular connections,

or equivalently the category D (0)
f of regular singular D-modules, where D = C({z})[d/dz] (C({z}) is the

field of fractions of C{z}). A meromorphic connection is equivalent to an equivalence class of differential
systems ∆A : dY

dx = AY up to the gauge-equivalence: ∆A ∼ ∆B if and only if there exists P ∈ Gln(C({z}))
such that B = P−1AP−P−1dP/dx. We consider the fundamental group π1(D∗,d) of a germ at zero of punc-
tured disk, pointed on a germ of direction d. We choose a generator γ (a one turn loop in the positive sense)
and we get an isomorphism Z→ π1(D∗,d), n 7→ γn. Then, by a very simple application of the Riemann-

Hilbert correspondance, our category D (0)
f is equivalent (via the monodromy representation) to the category

of finite dimensional representations of the fundamental group π1(D∗,d). A D-module M corresponds to a
representation ρM of π1(D∗,d).

1Each time we speak of representations of a pro-algebraic group, they are tacitly assumed to be morphisms for the pro-algebraic
structure (i.e. rational representations).
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We can apply the tannakian machinery to the group Γ = Z (or equivalently to Γ = π1(D∗,d)). Then

our category D(0)
f is equivalent to the category of representations of π1(D∗,d): a D-module M “is” a

representation ρM of the topological fundamental group π1(D∗,d), it is also equivalent to the category of
representations of the pro-algebraic completion π⊗1 (D∗,d) of π1(D∗,d): a D-module “is” a representation
ρ⊗M of the tannakian fundamental group π⊗1 (D∗,d). The “small fundamental group” is the topological group
π1(D∗,d), the “big fundamental group” is the pro-algebraic group π⊗1 (D∗,d). The small group is Zariski-
dense in the big group: the image of ρM is the monodromy group of M, it is Zariski-dense in the image of
ρ⊗M which “is” the differential galois group of M.

It is not difficult but important to understand the classification mechanism on this baby example: all
the information is hidden in the group Z and we must extract it. The essential point is to understand the
structure of the pro-algebraic completion of Z. We can use the tannakian machinery (this is “folklore
knowledge”, a reference is [27]): the pro-algebraic hull of Z is Zal = Aut⊗(ω), it is commutative and the
product of its semi-simple part Zal

s and its unipotent part Zal
u : Zal

s = Homgr(C∗,C∗), Zal
u = C (the additive

group) and ιal : Z → Zal is defined by 1 7→ (idC∗ ,1) (n 7→ ((z 7→ zn),n)). In order to understand what
will happen in more difficult situations, it is interesting to understand the pro-algebraic completion of Z
using regular singular differential equations and differential Galois theory. We shall start from π1(D∗,d)
and shall “compute” its pro-algebraic completion using Riemann-Hilbert correspondance. The main tool
is a universal Picard-Vessiot algebra U f ([14]). We consider some holomorphic functions on the Riemann
surface of the logarithm: log x and xα = eα log x (α ∈ C). They generate over C({z}) a differential algebra:
U f = C({z})

{

(xα)α∈C, log x
}

(it is a simple differential algebra; the brackets
{

· · ·
}

mean “differential

algebra generated by” ...). For each object M of D (0)
f , the algebra U f contains one and only one Picard-

Vessiot algebra for M. Equivalently we can solve any regular-singular system ∆A : dY
dx = AY using U f

(that is we can find a fundamental matrix solution with entries in U f ). The differential Galois group G f of
U f (or equivalently of its field of fractions) is a pro-algebraic group (U f is an inductive limit of finite type
differential extensions). The monodromy, that is the action of the loop γ is Galois, therefore we can identify γ
with an element of G f (γ(xα) = e2iπαxα and γ(log x) = log x+2iπ), and we get an injective homomorphism
of groups: ι : π1(D∗,d)→ G f . It is not difficult to prove that (G f , ι) is a pro-algebraic completion of
π1(D∗,d) and to compute G f (we shall admit these results here): its semi-simple part G f ,s = ˇC/Z is the
topological dual group of C/Z considered as the inductive limit of its finitely generated subgroups; its
unipotent part G f ,u is the differential Galois group of the extension C({z})

{

log z
}

, that is the additive
group C. We have an exact sequence of groups:

0→Q/Z→ C/Z→ C/Q→ 0

and an exact sequence of dual groups:

1→ T f → G f ,s→ Ẑ(1)→ 1.

(The proalgebraic group T f is the topological dual group of the group of “monodromy exponents”). Here,
G f ,s = Homgr(C/Z,C∗)≈Homgr(C∗,C∗). The respective images of γ in G f ,s and in G f ,u are z 7→ z and 2iπ.

The aim of this paper is to describe q-analogues of the differential fundamental groups. The construction
is independant of the construction of the differential case; yet, like in that case it is done in three steps: (1)
regular-singular or fuchsian equations, (2) formal or pure equations, (3) arbitrary equations meromorphic
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at the origin. We shall limit ourselves to theintegral slopes case (cf. some comments below). (The reader of
section 2 will recognise the main actors of the differential case under various disguises.) The first two steps
are already well known and the new and difficult part is the last one.

Notations. We fix q ∈ C such that |q|> 1 and write q = e−2iπτ, Im τ > 0.

(1) We begin with the regular singular case: a germ of meromorphic system at the origin σqY = AY
is regular singular if and only if it is meromophically equivalent to a fuchsian system σqY = BY (B(0) ∈

Gln(C)). We call the corresponding category E (0)
f the category of fuchsian modules, its tannakian Galois

group is isomorphic to Homgr(Eq,C∗)×C, where Eq = C∗/qZ is (the underlying abstract group of) the
elliptic curve associated to q (cf. [27] 2.2.2). There exists also a “small group” Zariski dense in the tan-
nakian Galois group, and one can guess it using a q-analogy: the image of Z in Homgr(C∗,C∗) is the
subgroup of group homomorphisms which are algebraic group homomorphisms, therefore it is natural to
consider the subgroup Π of the elements of Homgr(Eq,C∗) which are continuous. We use the decomposi-
tion C∗ = U× qR (U ⊂ C∗ is the unit circle) and we denote γ1,γ2 ∈ Homgr(Eq,C∗) the continuous group
homomorphisms defined respectively by uqy 7→ u and uqy 7→ e2iπy. Then Π is generated by γ1 and γ2 and

is Zariski-dense in Homgr(C∗,C∗), the “fundamental group” of the category E (0)
f (the local fundamental

group) π1,q, f is by definition the subgroup of Homgr(Eq,C∗×C) whose semi-simple component is gener-
ated by γ1 and γ2 and whose unipotent component is Z (cf. [27] 2.2.2).

(2) The next step is the study of the category E f orm of formal q-difference modules. We shall limit our-

selves to the integral slope case: the category E f orm,int (or equivalently of the category E (0)
p,1 of pure mero-

morphic modules with integral slopes, cf. below). It is a neutral tannakian category. As in the differential
case, in order to compute the corresponding “fundamental groups”, it is necessary to understand the formal
classification of q-difference equations of order one: two such equations σqy− ây = 0 and σqy− b̂y = 0
(â, b̂ ∈ C((z))∗) are formally equivalent if and only if a−1b ∈ σq,log C((z)), where σq,log f̂ = σq( f̂ )/ f̂ . Then
the order one equations are classified by the abelian group C∗/qZ×(zm)m∈Z 'Eq×Z (Eq correspond to the
fuchsian equations, (zm)m∈Z to irregular equations). The “basic” irregular equation is σqy−zy = 0, it admits
the Jacobi theta function θq as a solution (cf. below) and its q-difference Galois group is isomorphic to C∗.
Then one can prove that the tannakian Galois group G f orm,int of the category E f orm,int is isomorphic to the
topological dual group of Eq×Z (where Eq is interpreted as the inductive limit of its finitely generated
subgroups), that is to C∗× (Homgr(Eq,C∗)×C): C∗ is by definition the theta torus, it is the q-analogue of

the exponential torus. (The tannakian Galois group G(0)
p,1 of the category E (0)

p,1 of pure meromorphic modules
with integral slope is isomorphic to G f orm,int .) We do not know what will happen in the non integral slope
case.

(3) The last step and the main purpose of this paper is the study of the category E (0)
1 of q-difference

modules whose Newton polygon admits only integral slopes. It is a neutral tannakian category, we shall

prove that there exists a semi-direct decomposition of its tannakian Galois group G(0)
1 = Sto G(0)

p,1, where
St is a unipotent pro-algebraic group, and we shall describe the Lie algebra st of St: like in the differential
case this Lie algebra is a “pro-algebraic completion” of a free complex Lie algebra generated by a family

of “q-alien derivations”:
(

∆̇(δ)
c

)

δ∈N∗, ā∈Eq
.
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These q-alien derivations are indexed by labels (δ,a) (which are the q-analogs of the labels (q,d) of the
differential case):δ is by definition a weight on the θ-torus C∗ (that is, an element of the topological dual
group Z; actually, only the δ > 0 have a non trivial action, so that we harmlessly take δ ∈ N∗), and a is a
pair formed by a ∈ Eq (i.e. a q-direction, representing a germ of q-spiral at the origin) and an element ξ
of the q-local fundamental group π1,q, f . In order to define the q-alien derivations, we will use, as in the
differential case, some summability tools (here, an algebraic version of the q-multisummability due to the
second author), but the approach will be different: we will no longer use solutions but replace them by fiber
functors (⊗-functors). We will deal with meromorphic families of Lie-like automorphisms of fiber functors
(the variable being the q-direction of summability) and extract their singularities by a residue process. This
will give birth to q-alien derivations ∆̇a.

In this paper, we define the q-alien derivations in all generality and compute them in the one-level case
using a q-Borel transform (of some convenient order). This relates alien derivations to the irregularity in-
variants introduced in [22] and proves that, in this case, q-alien derivations are a complete set of irregularity
invariants. We shall extend these results to the general case in a forthcoming paper [21]. The principle

is similar but it is necessary to introduce a double family of categories “interpolating” between E (0)
1 and

respectively E f orm and E (0)
p,1 , in relation with slopes and q-Gevrey estimates. With these tools, we are able to

prove that, in the general case also, q-alien derivations are a complete set of irregularity invariants and that
the q-resurgence group is Zariski dense in St. (The reader can check as an exercise that, in the general case,
for an isoformal family of meromorphic q-difference modules M, the dimensions of the C-vector space of
the irregular invariants of [22] and of the C-vector space generated by the “acting” q-alien derivations are
equal: they are equal to the area of the “closed Newton polygon” of M).

2 The differential case

As we explained in the introduction, we will give in this section, for the convenience of the reader, a de-
scription of the wild fundamental group in the differential case. We will not use these results later.

After the study of the category of local meromorphic regular-singular connections (cf. the introduc-
tion), the next step is the study of the category of formal connections, or equivalently the category D f orm

of D̂-modules, where D̂ = C((z))[d/dz] (C((z)) is the field of fractions of C[[z]]). It is a neutral tan-
nakian category (cf. for instance [14]). One associates to a D̂-module M its Newton polygon N(M). The
slopes of N(M) are positive rational numbers. For sake of simplicity we shall limit ourselves to the full
subcategory D f orm,int of modules M whose Newton polygon has only integer slopes. In order to compute
the corresponding “fundamental groups”, it is necessary to understand the formal classification of differ-
ential equations of order one: two such equations dy/dx− ây = 0 and dy/dx− b̂y = 0 (â, b̂ ∈ C((z)))
are formally equivalent if and only if (b− a)dx ∈ dlog C((z)) (dlog C((z)) = {dĉ/ĉ| ĉ ∈ C((z))}). We
have dlog C((z)) = Z dx

x ⊕C[[z]]dx and C((z))dx/dlog C((z)) = C/Z dx
x ⊕C((z))/z−1C[[z]]dz. By inte-

gration adx ∈ C((z))dx gives q =
R

adx and we get an isomorphism between C((z))dx/dlog C((z)) and
C/Z log x⊕C((z))/C[[z]] = C/Z log x⊕ 1

z C[ 1
z ]. To α log x ∈ C/Z log x corresponds eα log x = xα (a

solution of dy/dx−αy = 0), to q ∈ 1
z C[ 1

z ] corresponds eq (a solution of dy/dx− q′y = 0). Therefore it
is natural to introduce the differential algebra U f orm,int = C((z))

{

(xα)α∈C,(eq)q∈ 1
z C[ 1

z ], log x
}

. It is a uni-

versal Picard-Vessiot algebra for the formal connections whose Newton polygons have only integer slopes
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and the differential Galois group of U f orm,int is isomorphic to the tannakian Galois group of the category
D f orm,int . We consider 1

z C[ 1
z ] as a Z-module. It has no torsion, it is an infinite dimensional lattice and

we consider it as the inductive limit of its finite dimensional sublattices. The topological dual group of
such a sublattice is a torus (an algebraic group isomorphic to some (C∗)µ), therefore the dual of 1

z C[ 1
z ] is

a pro-torus; by definition it is the exponential torus Texp,int (integral slopes case). Then the tannakian Ga-
lois group π⊗1, f orm,int of the category D f orm,int is isomorphic to the product of the exponential torus Texp,int

by the fuchsian group Homgr(C∗,C∗)×C: this is the “big fundamental group”; the “small fundamental
group” is the product of the exponential torus Texp,int by the topological fundamental group π1(D∗,d) (be
careful, the product decompositions are not canonical). In the general case, without any restriction on the
slopes, it is necessary to enlarge the universal algebra (replacing the variable x by all its ramifications t m = x,

m ∈ N∗). Then there is a non trivial action of γ on the Z-module
[

m∈N∗

1

x1/m
C[

1

x1/m
] (by monodromy) and

therefore on its dual Texp, the exponential torus. Then we have in the general case semidirect products:
π⊗1, f orm = Texp o (Homgr(C∗,C∗)×C) and π1, f orm = Texp o π1(D∗,d).

The last step is the study of the category of meromorphic connections, or equivalently the category Dan

of D-modules, where D = C({z})[d/dz]. This step is very difficult and involves a lot of delicate and deep
analysis. Here we shall only describe roughly the results (for more information one can read the original
papers [10, 18, 19, 20], and for more details [14]). Heuristically the origin 0 in C has an “analytic infinites-
imal neighborhood” and an “algebraic infinitesimal neighborhood”, the algebraic neighborhood lying in
the heart of the analytic neighborhood and being “very small” (cf. [6] and [8] for a detailed and precise
presentation). The algebraic neighborhood corresponds to Ẑ(1) = lim←−n∈N∗

µn (µn is the group of complex

n-th roots of the unity) considered as a quotient of Homgr(C∗,C∗) (the unipotent component C corresponds
to a “very very small” neighborhood of 0 in the heart of the algebraic neighborhood). The fuchsian torus
T f corresponds to a “part very near of the algebraic neighborhood”. It remains to understand what happens
in the “huge” region in the analytic neighborhood located between the algebraic neighborhood and the ex-
terior, the “actual world” C∗: one must imagine it as filled by “points” (that we shall label (q,d) below,
d being a direction and q a “parameter” of scale). Each point will be responsible for a “monodromy”, the
semi-simple part of this monodromy will be related to the exponential torus and its unipotent part will have
an infinitesimal generator, which is a Galois derivation: we call it an alien derivation (and denote it ∆̇q,d). It
is possible to give a rigorous meaning to this heuristic description. There are various approaches, the more
interesting for the study of q-analogues is the tannakian one (cf. [6]): one thinks to fiber functors as “points”
and to isomorphisms between fiber functors as “paths” (automorphisms of fiber functors corresponding to
“loops”). Here the paths are made of classical paths (analytic continuation) and new paths corresponding to
multisummability of formal (divergent) power series (it is worth noticing that at the algorithmic level these
two families of paths are in fact very similar: [7]). Heuristically when you have “sufficiently many points
and loops”, then the loops “fill” the tannakian Galois group (topologically in Zariski sense): this situation
will correspond to the “fundamental group” (the small one).

Let us describe now the “points” of the “annulus of the infinitesimal neighborhood” between the alge-
braic neighborhood and the “exterior real world” C∗. We shall first give the description and justify it later:
the points will appear naturally from the analysis of the Stokes phenomena, that is from the construction of
the paths. We remark that the infinite dimensional lattice 1

z C[ 1
z ] is the topological dual of its topological

dual, the exponential torus Texp,int . Then each polynomial q ∈ 1
z C[ 1

z ] can be interpreted as a weight on the

6



exponential torus: if τ ∈ Texp,int , τ(eq) = q(τ)eq, q : Texp,int → C∗ is a morphism of pro-algebraic groups.
The set of directions d issued from the origin is parametrized by the unit circle S1 (which we can identify
with the boundary of C∗, the real blow up of the origin in C corresponding to r = 0 in polar coordinates
(r,θ)). We shall call degree of q its degree in 1/x. If a/xk (a ∈ C∗,k ∈ N∗) is the monomial of highest
degree of q, then it controls the growth or the decay of eq near the origin (except perhaps on the family of
2k “oscillating lines”: ℜ(a/xk) = 0, classically named Stokes lines or, better..., anti-Stokes lines), we have
k open sectors of exponential decay (of order k) of eq and k open sectors of exponential growth (of order k)
of eq. To each pair (q,d) ∈ 1

z C[ 1
z ]×S1 such that the direction d bisects a sector of decay of eq we associate

a label (q,d): the labels will correspond to the points in the “terra incognita”, our mysterious annulus. We
introduce on 1

z C[ 1
z ] = Ťexp,int the filtration by the degree k (it corresponds to the slope filtration associated

to the Newton polygon in the formal category). Heuristically, if k = degq, then the corresponding point
(q,d) “belongs” to the direction d and if k is “big” this point is far from the algebraic neighborhood and
near of the exterior world C∗. (To each k ∈ N∗ corresponds a “slice” isomorphic to C∗, an annulus. If
k > k′, then the k′-annulus is “surrounded” by the k annulus, and “very small” compared to it [17]). We
shall actually need points on the “universal covering” of our annulus. They are labelled by the (q,d), where
d is a direction above d on the Riemann surface of the logarithm.

In order to describe the “paths”, we need the notion of multisummability ([9], [1], [14], [16]). Let
f̂ ∈ C((z)); we shall say that it is holonomic if there exists D ∈ D = C({z})[d/dx] such that D f = 0. The
set of holonomic power series expansions is a sub-differential algebra K of C((z)) (containing C({z}))
and there is a family of summation operators (S±d )d∈S1 (− is for “before d” and + is for “after d” when one
turns on S1 in the positive sense): S±d : K → Od (where Od is the algebra of germs of holomorphic func-
tions on sectors bisected by d), these operators are injective homomorphisms of differential algebras, their
restriction to C({z}) is the classical sum of a convergent power series and S±( f̂ ) admits f̂ as an asymptotic
expansion; moreover, for a fixed f̂ , the two summations S+

d and S−d coı̈ncide, except perhaps for a finite
set of singular directions; when d moves between two singular directions the sums S+

d ( f̂ ) = S−d ( f̂ ) glue
together by analytic continuation. When d crosses a singular line, there is a jump in the sum: this is the
Stokes phenomenon. We consider now the differential algebra Uan = K

{

(xα)α∈C,(eq)q∈ 1
z C[ 1

z ], log x
}

, it

is the universal differential algebra associated to the family of germs of meromorphic connections. There
are natural extensions of the operators S±d to Uan, but we have to be careful: we must define S±d (log x) and
S±d (xα). In order to do that we need to choose a branch of the logarithm in a germ of sector bisected by
d (xα = eα log x). This corresponds to the choice of a direction d above d on the Riemann surface of the
logarithm (d ∈ (R,0), which is the universal covering of (S1,1)). In the end, we get a family of summation
operators (S±d )d∈R : Uan→ Od ; they are injective homomorphisms of differential algebras.

Let ∆ : dY
dx = AY be a germ of meromorphic system at the origin (integral slopes case). It admits a formal

fundamental matrix solution F̂ : dF̂
dx = AF̂. The entries of F̂ belongs to the universal algebra Uan, therefore

F+
d = S+

d (F̂) and F−d = S−d (F̂) are germs of actual fundamental solutions on germs of sectors bisected
by d. We have F+

d = F−d Cd , where the constant matrix Cd ∈ Gln(C) is a Stokes matrix (it is unipotent).
The map Std = (S+

d )−1S+
d induces an automorphism of the differential algebra C({z}){F̂}, therefore it

defines an element of the differential Galois group of the system ∆. More generally Std = (S+
d )−1S+

d is an
automorphism of the simple differential algebra Uan and defines an element of the differential Galois group
of this algebra. This element is pro-unipotent and we can define a Galois derivation ∆̇d of Uan by Std = e∆̇d ;
by definition, ∆̇d is the alien derivation in the direction d. Now there is a quite subtle point in our analysis:
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from the germ of meromorphic system ∆ : dY/dx = AY we get a representation ρ∆, f orm : π1, f orm→ Gl(V )
and a family of Stokes automorphisms (Std(∆)∈Gl(V ))d∈R. This last datum is equivalent to the knowledge
of the corresponding family of alien derivations (∆̇d(∆) ∈ End(V))d∈R. There is a natural action of the
topological fundamental group on the family of alien derivations: γ∆̇dγ−1 = ∆̇γ(d) (γ(d) is a translation of
−2π of d), therefore it is natural to introduce the semi-direct product exp(∗d∈RC∆̇d)o(γ) (where ∗d∈RC∆̇d)
is the free Lie-algebra generated by the symbols ∆̇d and exp(∗d∈RC∆̇d) its exponential group in a “good
sense”) and to observe that the connection defined by ∆ “is” the representation of this group. We could stop
here and be happy: why not decide that exp(∗d∈RC∆̇d)o (γ) is the fundamental group for the meromorphic
category? This does not work. Of course we have all the knowledge but in a bad form: to a connection
we can associate a representation of our group, but conversely there are representations which do not come
from a connection, the admissible representations are conditionned. The geometric meaning of the problem
is clear: Std corresponds to a loop around a whole bunch of points: all the (q,d) corresponding to all the
q ∈ 1

z C[ 1
z ] admitting d as a line of maximal decay for eq (we shall say in that case that q is supported by d

and note (q,d) ∈ d), but a “good” fundamental group must allow loops around each individual point (q,d).
It is not difficult to solve the problem; we know a priori that our representation must contain in some sense
the answer, it remains “only” to extract it. The idea is quite natural: using the exponential torus we shall
“vibrate” the alien derivation ∆̇d and extracts the “Fourier coefficients” ∆̇q,d (for q supported by d). We
introduce, in the Lie algebra of the differential Galois group Gan of Uan, the family (τ∆̇dτ−1)τ∈Texp,int (it is a

family of Galois derivations), then we consider the “Fourier expansion” τ∆̇dτ−1 = ∑
(q,d)∈d

q(τ)∆̇q,d (it makes

sense because for each connection the sum is finite). The coefficients are also in the Lie algebra of the Gan,
they are Galois derivations. Now we have won: we consider the free Lie algebra Lie R = ∗d∈R,(q,d)∈dC∆̇(q,d)

(it is, by definition, the resurgence algebra), and the corresponding exponential group R (it makes sense
[9], it is by definition the resurgence group). We have an action of the formal fundamental group on the
resurgence Lie algebra: γ∆̇(q,d)γ−1 = ∆̇(q,γ(d)), τ∆̇(q,d)τ−1 = q(τ)∆̇(q,d) (τ∈ Texp,int ) and we get a semi-direct
product R o π1, f orm,int = exp(∗d∈R,(q,d)∈dC∆̇(q,d))o (Texp,int × (γ)). The knowledge of a representation is
equivalent to the knowledge of its restriction to the formal part and its “infinitesimal restriction” to the free
Lie algebra. Now the objects of our category (the meromorphic connections) correspond to unconditioned
representations (by representation we mean, of course, finite dimensional representation whose restriction
to the exponential torus is a morphism). We have now a fundamental group (the small one), it is the wild
fundamental group (this is in the integral slope case, but with small adaptations it is easy to build the wild
fundamental group in the general case). What about the big fundamental group (that is the tannakian Galois
group)? We can easily derive its description from the knowledge of the wild fundamental group. The first
step is to build some sort of pro-algebraic completion of the resurgent Lie algebra Lie R (cf. [14]): if ρ
is a representation of our wild fundamental group, we can suppose that V = Cn and that the image of the
exponential torus is diagonal, it follows that the corresponding “infinitesimal restriction” ψ = Lρ to the
resurgent Lie algebra satisfies automatically the two conditions:

1. ψ(∆̇(q,d)) is nilpotent for every ∆̇(q,d).

2. There are only finitely many ∆̇(q,d) such that ψ(∆̇(q,d)) 6= 0.

By definition, the pro-algebraic completion (Lie R )alg of the free Lie algebra Lie R is a projective limit
of algebraic Lie algebras: (Lie R )alg = lim←−

ψ
Lie R /Ker ψ, where the projective limit is taken over all

homomorphisms of C-algebras ψ : Lie R → End(V) (where V is an arbitrary finite dimensional complex

8



space) satisfying conditions (1) and (2). Each algebraic Lie algebra Lie R /Ker ψ is the Lie algebra of a
connected algebraic subgroup of Gl(V ). We can consider the projective limit of these subgroups, it is a
pro-algebraic group (a kind of pro-algebraic completion of the resurgent group R ). We shall call it the
resurgent pro-algebraic group and denote it R alg, its Lie algebra is (Lie R )alg: Lie R alg = (Lie R )alg.
The action of (γ) on Lie R gives an action on Lie R alg, this action can be extended “by continuity” to an
action of π⊗1, f = Homgr(C∗,C∗)×C, and, using the exponential, we get an action of π1, f on R alg; there

is also clearly an action of the exponential torus Texp,int on R alg. Finally, we get a semi-direct product
R alg

o π⊗1, f orm,int , which is isomorphic to the tannakian group π⊗1,an,int .

Let us end this section with a short comparison of the three parallel steps in the differential and in the
q-difference cases.

The first step is a little bit more complicated in the q-difference case than in the differential case. The
second step is a lot simpler (the exponential torus is replaced by a theta torus and, in the integral slope case,
this theta torus is isomorphic to C∗, therefore radically simpler than the exponential torus). For the last step,
the proofs, that we will expose below, are less intuitive in the q-difference case, than in the differential case;
but, in the end, the results are in some sense simpler: one of the essential simplifications is due to the fact
that the q-resurgent group is unipotent (the differential resurgent group contains, on the contrary, a lot of
Sl2 pairs, because one can play with q and−q, which exchange the sectors of growth and decay of eq,e−q).

3 Prerequisites (mostly from [27], [28], [22] and [29])

3.1 General facts

Notations, general conventions. We fix q ∈C such that |q|> 1. We then define the automorphism σq on
various rings, fields or spaces of functions by putting σq f (z) = f (qz). This holds in particular for the ring
C{z} of convergent power series and its field of fractions C({z}), the ring C[[z]] of formal power series and
its field of fractions C((z)), the ring O(C∗,0) of holomorphic germs and the field M (C∗,0) of meromorphic
germs in the punctured neighborhood of 0, the ring O(C∗) of holomorphic functions and the field M (C∗)
of meromorphic functions on C∗; this also holds for all modules or spaces of vectors or matrices over these
rings and fields. For any such ring (resp. field) R, the σq-invariants elements make up the subring (resp.
subfield) Rσq of constants. The field of constants of M (C∗,0) and that of M (C∗) can be identified with a
field of elliptic functions, the field M (Eq) of meromorphic functions over the complex torus Eq = C∗/qZ.
We shall write a = π(a) ∈ Eq for the image of a ∈ C∗ by the natural projection π : C∗→ Eq, and [a;q] =
aqZ = π−1(a) ⊂ C∗ for the preimage of a in C∗, a discrete q-spiral. These notations extend to subsets
A⊂ C∗: A = π(A)⊂ Eq and [A;q] = AqZ = π−1(A)⊂ C∗.

Categories. Let K denote any one of the forementioned fields of functions. Then, we write Dq,K =
K

〈

σ,σ−1
〉

for the Öre algebra of non commutative Laurent polynomials characterized by the relation σ. f =
σq( f ).σ. We now define the category of q-difference modules in three clearly equivalent ways:

Di f f Mod(K,σq) = {(E,Φ) / E a K-vector space of finite rank ,Φ : E→ E a σq-linear map}

= {(Kn,ΦA) / A ∈ GLn(K),ΦA(X) = A−1σqX}

= { finite length left Dq,K-modules}.
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For instance, a morphism from MA = (Kn,ΦA) to MB = (Kn,ΦB), where A ∈ GLn(K) and B ∈ GLp(K), is
a F ∈Mp,n(K) such that (σq)FA = BF. Then, Di f f Mod(K,σq) is a C-linear abelian rigid tensor category,
hence a tannakian category. Moreover, all objects in Di f f Mod(K,σq) have the form Dq,K/Dq,KP. In the
case of K = C({z}), the category Di f f Mod(K,σq) will be written E (0) (for “equations near 0”).

Vector bundles and fiber functors. To any module MA in E (0), one can associate a holomorphic vector
bundle FA over Eq:

FA =
(C∗,0)×Cn

(z,X)∼ (qz,A(z)X)
→

(C∗,0)

z∼ qz
= Eq.

This is the usual construction from equivariant bundles except that the germ (C∗,0) is only endowed with
the action of the semigroup q−N instead of a group; correspondingly, the projection map is not a covering.
The pullback F̃A = π∗(FA) over the open Riemann surface C∗ is the trivial bundle C∗ ×Cn, but with
an equivariant action by qZ. The OEq-module of sections of FA (also written FA) is the sheaf over Eq

defined by: FA(V ) = {solutions of σqX = AX holomorphic over π−1(V )}. ¿From these two descriptions,
the following is immediate:

Proposition 3.1 This gives an exact faithful ⊗-functor MA  FA from E (0) to the category Fib(Eq) of

holomorphic vector bundles. Taking the fiber of F̃A at a ∈ C∗ yields a fiber functor ω(0)
a on E (0) over C.

Newton polygon. Any q-difference module M over C({z}) or C((z)), can be given a Newton polygon
N(M) at 0, or, equivalently, a Newton function rM sending the slope 2 µ ∈ S(M) ⊂ Q to its multiplicity
rM(µ) ∈ N∗ (and the µ out of the support S(M) to 0).
For instance, the q-difference operator L = qzσ2−(1+z)σ+1∈Dq,K gives rise to the q-difference equation
qzσ2

q f − (1+ z)σq f + f = 0, of which the so-called Tschakaloff series ∑n≥0 qn(n−1)/2zn is a solution (it is a
natural q-analogue of the Euler series). By vectorisation, this equation gives rise to the system σqX = AX ,

where A =

(

z−1 z−1

0 1

)

, and to the module M = MA. The latter is isomorphic to Dq,K/Dq,K L̂, where

L̂ = σ2− (z+1)σ+ z = (σ− z)(σ−1) is the dual operator of L. We respectively attach to σ− z and σ−1
the slopes −1 and 0 and take S(M) = {−1,0}, with multiplicities rM(−1) = rM(0) = 1.

3.2 Filtration by the slopes

The filtration and the associated graded module. The module M is said to be pure isoclinic of slope
µ if S(M) = {µ} and fuchsian if moreover µ = 0. Direct sums of pure isoclinic modules are called pure
modules 3: they are irregular objects without wild monodromy, as follows from [22] and [29]. The tan-

nakian subcategory of E (0) made up of pure modules is called E (0)
p . Modules with integral slopes also form

tannakian subcategories, which we write E (0)
1 and E (0)

p,1 .

It was proved in [27] that the category E (0)
f of fuchsian modules is equivalent to the category of flat holo-

morphic vector bundles over Eq and that its Galois group G(0)
f is isomorphic to Homgr(C∗/qZ,C∗)×C

2It should be noted that the slopes defined and used in the present paper are the opposites of the slopes defined in previous papers.
3It should be noted that we call in the present paper a pure isoclinic (resp. pure) module what was called a pure (resp. tamely

irregular) module in previous papers.
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(here, as in the introduction, Homgr means “morphisms of abstract groups”). Since objects of E (0)
p,1 are

essentially Z-graded objects with fuchsian components, the Galois group of E (0)
p,1 is G(0)

p,1 = C∗×G(0)
f .

Theorem 3.2 [28] Let the letter K stand for the field C({z}) (convergent case) or the field C((z)) (formal
case). In any case, any object M of Di f f Mod(K,σq) admits a unique filtration (F≤µ(M))µ∈Q by subobjects

such that each F(µ)(M) =
F≤µ(M)
F<µ(M) is pure of slope µ (thus of rank rM(µ)). The F(µ) are endofunctors of

Di f f Mod(K,σq) and gr =
L

F(µ) is a faithful exact C-linear ⊗-compatible functor and a retraction of

the inclusion of E (0)
p into E (0). In particular, the functor gr retracts E (0)

1 to E (0)
p,1 .In the formal case, gr is

isomorphic to the identity functor.

Corollary 3.3 For each a ∈ C∗, the functor ω̂(0)
a = ω(0)

a ◦gr is a fiber functor.

We shall consistently select an arbitrary basepoint a∈C∗ and identify the Galois group G(0) as Aut⊗
(

ω̂(0)
a

)

.

Corollary 3.4 The Galois group G(0) of E (0) is the semi-direct product StoG(0)
p of the Galois group G(0)

p

of E (0)
p by a prounipotent group, the Stokes group St.

From now on, we only consider modules with integral slopes.
Further studies would have to be based on the work [12] by van der Put and Reversat.

Description in matrix terms. We now introduce notational conventions which will be used all along this

paper for a module M in E (0)
1 and its associated graded module M0 = gr(M), an object of E (0)

p,1 . The module
M may be given the shape M = (C({z})n,ΦA), with:

(1) A = AU =
de f













zµ1A1 . . . . . . . . . . . .
. . . . . . . . . Ui, j . . .
0 . . . . . . . . . . . .
. . . 0 . . . . . . . . .
0 . . . 0 . . . zµk Ak













,

where the slopes µ1 < · · ·< µk are integers, ri ∈ N∗, Ai ∈ GLri(C) (i = 1, . . . ,k) and

U = (Ui, j)1≤i< j≤k ∈ ∏
1≤i< j≤k

Matri,r j (C({z})).

The associated graded module is then a direct sum M0 = P1⊕·· ·⊕Pk, where, for 1≤ i < j ≤ k, the module
Pi is pure of rank ri and slope µi and can be put into the form Pi = (C({z})ri ,ΦzµiAi ). Therefore, one has
M0 = (C({z})n,ΦA0), where the matrix A0 is block-diagonal (it is the same as AU , with all Ui, j = 0).
We write G⊂ GLn for the algebraic subgroup and g for its Lie algebra, made up of matrices of the form:

(2) F =













Ir1 . . . . . . . . . . . .
. . . . . . . . . Fi, j . . .
0 . . . . . . . . . . . .
. . . 0 . . . . . . . . .
0 . . . 0 . . . Irk













and f =













0r1 . . . . . . . . . . . .
. . . . . . . . . Fi, j . . .
0 . . . . . . . . . . . .
. . . 0 . . . . . . . . .
0 . . . 0 . . . 0rk













.
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For F in G, we shall write F [A] = (σqF)AF−1 the result of the gauge transformation F on the matrix A.
Theorem 3.2 entails:

∀(Ui, j)1≤i< j≤k ∈ ∏
1≤i< j≤k

Matri,r j(C({z})) , ∃!F̂ ∈G(C((z))) : F̂ [A0] = AU .

This F̂ will be written F̂A (where A = AU ). The blocks F̂i, j are recursively computed as follows. For j < i,
F̂i, j = 0. For j = i, F̂i, j = Iri . Then, for j > i, one must solve the non homogeneous first order equation:

(3) σqF̂i, jz
µ j A j− zµiAiF̂i, j = ∑

i<k< j

Ui,kF̂k, j +Ui, j.

Description of the Stokes group. To go further, we choose to fix an arbitrary basepoint a ∈ C∗ (see the
corollary to theorem 3.2) and we identify the Galois groups accordingly:

G(0)
1 =

de f
Gal(E (0)

1 ) = Aut⊗(ω̂(0)
a ).

Recall from the quoted papers the action of the pure component G(0)
p,1 = C∗×Homgr(C∗/qZ,C∗)×C. We

keep the notations above. For any A with graded part A0, an element (α,γ,λ) ∈ G(0)
p,1 yields the automor-

phism of ω̂(0)
a (A) = ω(0)

a (A0) = Cn given by the matrix:












αµ1γ(As,1)Aλ
u,1 . . . . . . . . . . . .

. . . . . . . . . 0 . . .
0 . . . . . . . . . . . .
. . . 0 . . . . . . . . .

0 . . . 0 . . . αµk γ(As,k)Aλ
u,k













,

where we have written Ai = As,iAu,i the multiplicative Dunford decomposition (into a semi-simple and a
unipotent factor that commute) and γ acts on a semi-simple matrix through its eigenvalues. These matrices

generate the group G(0)
p,1(A)⊂ GLn(C).

We then have a semi-direct decomposition: G(0)
1 = StoG(0)

p,1, where the Stokes group St is the kernel of the

morphism G(0)
1 → G(0)

p,1. The group St(A) is an algebraic subgroup of G(C). The above matrix of G(0)
p,1(A)

acts by conjugation on the matrix described by (2): the Fi, j block is sent to αµi−µ j γ(As,i)Aλ
u,iFi, j

(

γ(As, j)Aλ
u, j

)−1
.

In particular, the group C∗ acts on the “level δ” upper diagonal µ j−µi = δ (where δ ∈ N) by multiplication
by α−d . The group St(A) is filtered by the normal subgroups Stδ(A) defined by: µ j−µi ≥ δ (meaning that
all blocks such that 0 < µ j−µi < δ vanish).
Likewise, the Lie algebra st(A) = Lie

(

St(A)
)

, which is a subalgebra of g(C), admits an adjoint action
described by the same formulas (this is because logPFP−1 = P logFP−1). The algebra st(A) is graded by
its “level δ” upper diagonals stδ(A), defined by µ j− µi = δ. As noted in [29], the algebra stδ(A) can be
identified with the (group) kernel of the central extension St(A)/Stδ+1(A)→St(A)/Stδ(A).

3.3 Stokes operators

Algebraic summation. The following computations are extracted from [29]. We need the following theta
function of Jacobi: θq(z) = ∑n∈Z q−n(n+1)/2zn. It is holomorphic in C∗ with simple zeroes, all located on the
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discrete q-spiral [−1;q]. It satisfies the functional equation: σqθq = zθq. We then define θq,c(z) = θq(z/c)
(for c ∈ C∗); it is holomorphic in C∗ with simple zeroes, all located on the discrete q-spiral [−c;q] and
satisfies the functional equation: σqθq,c = z

c θq,c.
For a given formal class described by A0, µ1, . . . ,µk and r1, . . . ,rk as above, and for any c∈C∗, we introduce
the matrix Tc,A0 ∈Matn(M (C∗)) which is block-diagonal with blocks θ−µi

c Iri . Moreover, we shall assume
the following normalisation due to Birkhoff and Guenther (see [22], [29]):

∀i < j , all coefficients of Ui, j belong to ∑
µi≤d<µ j

Czd .

Then, putting A′i = cµiAi ∈ GLri(C) and U ′i, j = (z/c)−µiθµ j−µi
c Ui, j ∈Matri,r j (O(C∗)), we have:

A′U ′ =
de f

Tc,A0 [AU ] =













A′1 . . . . . . . . . . . .
. . . . . . . . . U ′i, j . . .

0 . . . . . . . . . . . .
. . . 0 . . . . . . . . .
0 . . . 0 . . . A′k













.

Now, if the images in Eq of the spectra Sp(A′i) are pairwise disjoint, there is a unique F ′ ∈G(O(C∗)) such
that F ′[A′0] = A′U ′ . Its coefficients are recursively defined by the equations:

σqF ′i, jA
′
j−A′iF

′
i, j = ∑

i<k< j

U ′i,kF ′k, j +U ′i, j.

The unique solution of this equation in O(C∗) is obtained by taking the Laurent series:

F ′i, j = ∑
p∈Z

Φ−1
qpA′j,A

′
i
(Vp)zp,

(

∑
p∈Z

Vp zp = ∑
i<k< j

U ′i,kF ′k, j +U ′i, j

)

,

where one writes ΦB,C(M) = MB−CM (that map is one to one if and only if Sp(B)∩Sp(C) = /0). Note for
further use that the condition we have to impose on the spectra is the following:

(4) ∀i < j , qZcµiSp(Ai)∩qZcµ j Sp(A j) = /0.

This is equivalent to requiring that c 6∈ ΣA0 , where ΣA0 is some explicit finite subset of Eq.
¿From the equalities A′U ′ = Tc,A0 [AU ], A′0 = Tc,A0 [A0] and F ′[A′0] = A′U ′ , we get at last F[A0] = AU , where

F = T−1
c,A0

F ′Tc,A0 can be easily computed: it belongs to G(M (C∗)) and Fi, j = θµi−µ j
c F ′i, j. The condition that

the F ′i, j are holomorphic over C∗ is equivalent to the following condition:

(5) ∀i < j , Fi, j has poles only on [−c;q], and with multiplicities ≤ µ j−µi.

Then, we get the following conclusion: there is a unique F ∈G(M (C∗)) such that condition (5) holds and
F [A0] = AU . Note that the condition depends on c ∈ Eq rather than c. To summarize the discussion:

Proposition 3.5 For every c ∈ C∗ satisfying condition (4) (i.e., c 6∈ ΣA0), there is a unique F ∈G(M (C∗))
satisfying condition (5) and such that F [A0] = AU . We consider this F as obtained by summation of F̂A in
the direction c ∈ Eq and, accordingly, write it ScF̂A.

If we now choose two q-directions of summation c,d ∈ Eq, the ambiguity of summation is expressed by:

(6) Sc,dF̂A =
de f

(ScF̂A)−1SdF̂A.

This is a meromorphic automorphism of A0. As explained in [22] and [29], it is a Stokes operator.
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Case of one level. For further use, we now specialize some of the previous results to the case of two
(integral) slopes µ < ν, and only one “level” δ = ν−µ ∈ N∗. For simplicity, we write our matrices:

(7) M0 =

(

zµA 0
0 zνB

)

and M =

(

zµA zµUB
0 zνB

)

,

where A ∈ GLr(C), B ∈ GLs(C) and U ∈Matr,s(Cδ−1[z]) (polynomials with degree < δ). It is clear that the
upper right block can indeed be written in such a way. Then the unique element of G(C((z))) which sends

M0 to M is the matrix

(

Ir F
0 Is

)

, where F is the unique element of Matr,s(C((z))) such that:

(8) zδσqF−Λ(F) = U,

Here, we have written Λ(F) = AFB−1 (thus, an endomorphism of Matr,s(C) and similar spaces). The formal
solution F can be computed by identification of coefficients, i.e. by solving:

(9) ∀n ∈ Z , qn−δFn−δ−AFnB−1 = Un.

Similarly, the unique element of G(M (C∗)) such that condition (5) holds which sends M0 to M is the matrix
(

Ir F
0 Is

)

, where F is the unique of Matr,s(M (C∗)) with poles only on [−c;q] and with multiplicities ≤ d

which is solution of equation (8). This is solved by putting F = θ−δ
c G, so that G is a solution holomorphic

on C∗ of the following equation:

(10) cδσqG−Λ(G) = V, where G = θδ
cF and V = θδ

cU.

This can be solved by identification of coefficients of the corresponding Laurent series, i.e. by solving:

(11) ∀n ∈ Z , cδqnGn−AGnB−1 = Vn.

This is possible if cδqZ ∩ Sp(A)/Sp(B) = /0, which is precisely condition (4) specialized to the present
setting. Then we can take Gn = (cδqnId−Λ)−1Vn.

4 Stokes operators and alien derivations

4.1 Stokes operators are galois

We take on the notations of section 3.2 and consider moreover another object B, to which we apply similar
notations: graded B0, diagonal blocks B j corresponding to slopes ν j with multiplicities s j , etc.

Lemma 4.1 (i) Assume the following condition:

(12) ∀i < i′, j < j′ , qZcµi+ν j Sp(Ai)Sp(B j)∩qZcµi′+ν j′ Sp(Ai′)Sp(B j′) = /0.

Then:

(13) ScF̂A⊗B = (ScF̂A)⊗ (ScF̂B).
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(ii) Assume the following condition:

(14) ∀i, j such that µi < ν j , qZcµiSp(Ai)∩qZcν j Sp(B j) = /0.

Then, for any morphism F : A→ B, writing F0 = grF, we have:

(15) F ScF̂A = ScF̂B F0.

Proof. - (i) From elementary properties of the tensor product, we draw that the diagonal blocks of A⊗B
are the zµi+ν j Ai⊗B j and that Sp(Ai⊗B j) = Sp(Ai)Sp(B j); thus the right hand side of the equality is a
morphism from gr(A⊗B) = A0⊗B0 to A⊗B satisfying condition (5) on poles: it has to be ScF̂A⊗B.
(ii) From the functoriality of the filtration, we know that F only has rectangular blocks relating slopes
µi ≤ ν j, and that F0 is made up of those such that µi = ν j. It is sensible to call the latter “diagonal blocks”.
Then, the compositum (ScF̂B)−1F ScF̂A is a (meromorphic) morphism from A0 to B0, with diagonal F0

(since ScF̂A and ScF̂B are in G) and with 0 under the diagonal. Any block Fi, j such that µi < ν j has all

its poles on [−c;q], and with multiplicities ≤ ν j− µi; thus, Fi, j = θµi−ν j
c F ′i, j, where F ′i, j is holomorphic on

C∗ and satisfies: σqF ′i, jc
µ j A j = cµiAiF ′i, j The same computation (with the Laurent series) as in section 3.3

shows that, under condition (14), this implies F ′i, j = 0. Therefore (ScF̂B)−1F ScF̂A = F0 and (15) holds. �

In terms of the fiber functors introduced after theorem 3.2, the meaning of the above lemma is that,
under proper restrictions to ensure that ScF̂A is well defined at a,and that the nonresonancy conditions (12)

and (14) hold for any pair of objects, A ScF̂A(a) is an ⊗-isomorphism from ω̂(0)
a to ω(0)

a . For any pure
A0, taking up the previous notations, we therefore define, first its “weighted spectrum” and singular locus:

WSp(A0) = the subgroup of Eq×Z generated by
[

i

(

Sp(Ai)×{µi}
)

, Σ̃(A0) =
[

µ6=0

{c∈Eq / (µc,µ)∈WSp(A0)}.

Proposition 4.2 Let < A > be the tannakian subcategory of E (0)
1 generated by A. Fix c 6∈ Σ̃(A0) and

a 6∈ [−c;q]. Then B ScF̂B(a) is an⊗-isomorphism from ω̂(0)
a to ω(0)

a , both being restricted to < A >.

Proof. - Apply the lemma and the formulas giving the slopes of linear constructions in [28]. �

Now we recall, from [29] that, for a pure object A = A0, all the ScF̂A are equal (they are indeed equal to
the formal Stokes operator F̂A which is actually analytic).

Theorem 4.3 With the same restrictions, fix an arbitrary c0 6∈ Σ̃(A0)∪ {−a}. Then, for all c 6∈ Σ̃(A0)∪
{−a}, we have, using notation (6):

Sc0,cF̂A(a) ∈St(A).

Proof. - By the above proposition, it is in the Galois group; by the remark above, it is killed by the functor
gr. �

Corollary 4.4 We get a family of elements of Lie-like automorphisms: LSc,a(A) =
de f

log(Sc0,cF̂A(a))∈ st(A).
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Now, although the functoriality and⊗-compatibility were proved only for c 6∈ Σ̃(A0)∪{−a}, the above
formula is actually well defined for all c 6∈ ΣA0 ∪{−a}. Moreover, from the explicit computation in section
3.3 (multiplications by powers of θc and resolution of recursive equations by inversion of ΦqpA′j ,A

′
i
), we see

that the mapping c 7→ LSc,a(A) is meromorphic on Eq, with poles on ΣA0 . Moreover, it takes values in the
vector space st(A) for all c except for a denumerable subset: therefore, it takes all its values in st(A). Last,
taking residues at a pole is an integration process and gives values in the same vector space.

Theorem 4.5 Define the q-alien derivations by the formula:

∆̇c(A) = Resd=cLSd,a(A).

Then, ∆̇c(A) ∈ st(A). (In order to alleviate the notation, we do not mention the arbitrary basepoint a ∈C∗.)

Of course, for c 6∈ ΣA0 , we have ∆̇c(A) = 0. According to the graduation of st described at the end of
section 3.2, each alien derivation admits a canonical decomposition:

(16) ∆̇ =
M

δ≥1

∆̇(δ)
c ,

where ∆̇(δ)
c (A) ∈ stδ(A) has only non null blocks for µ j−µi = δ.

Theorem 4.6 The alien derivations are Lie-like ⊗-endomorphisms of ω̂(0)
a over E (0)

1 .

Proof. - This means first that they are functorial; for all morphisms F : A→ B, one has:

∆̇c(B)◦ ω̂(0)
a (F) = ω̂(0)

a (F)◦ ∆̇c(A).

Note that ω̂(0)
a (F) = F0(a). First assume the previous restrictions on c. Then, from the lemma 4.1, we get

that Sc0,cF̂B(a)◦F0(a) = F0(a)◦Sc0,cF̂A(a). Now, the logarithm of a unipotent matrix P being a polynomial
of P, we have R ◦Q = Q ◦P⇒ logR ◦Q = Q ◦ logP, so that we have LSc,a(B) ◦F0(a) = F0(a) ◦LSc,a(A)
and we take the residues on both sides. Now that the equality is established outside a denumerable set of
values of c, we can extend it to all values by holomorphy.
The assertion means, second, Lie-like ⊗-compatibility:

∆̇c(A⊗B) = 1⊗ ∆̇c(B)+ ∆̇c(A)⊗1,

where the left and right 1 respectively denote the identities of ω̂(0)
a (A) and ω̂(0)

a (B). This equality makes

sense because ω̂(0)
a is itself ⊗-compatible. From the lemma 4.1 we get first that LSc,a(A⊗B) = LSc,a(A)⊗

LSc,a(A). Then, we note that, for any two unipotent matrices P and Q, the commuting product P⊗Q =
(P⊗1)(1⊗Q) = (1⊗Q)(P⊗1) entails log(P⊗Q) = (logP)⊗1+1⊗ (logQ). The proof is then finished
as above. �

4.2 Alien derivations and q-Borel transform

Let δ ∈ N∗ and assume that the matrix A of (1) has only null blocks Ui, j for µ j − µi < δ. Then, in the
computation (3), we find the following equation for µ j−µi < δ: σqF̂i, jzµ j A j− zµiAiF̂i, j = 0. Likewise, the
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upper diagonal blocks of any ScF̂A satisfy exactly the same equations. These have no non trivial formal
solution, neither non trivial meromorphic wih less than (µ j−µi) poles modulo qZ (this follows from 3.3).
Hence, as well F̂A as all the summations ScF̂A have null blocks Fi, j for 0 < µ j−µi < δ.
On level µ j−µi = δ, the equations to be solved are:

σqFi, jz
µ j A j− zµiAiFi, j = Ui, j,

which is of the same type as those of 3.3. The properties of this first non trivial level of F̂A and ScF̂A will
play a crucial role in [21]. Indeed, the logarithm logF has, as first non trivial level the same level δ, and the

corresponding diagonal is equal to that of F. Therefore, after taking residues, on gets straightaway the ∆̇(δ)
c .

To study it in some detail, we therefore take again the light notations of 3.3.

Solving (8) with q-Borel transforms. We consider δ∈N∗ as fixed, to alleviate notations. Let the Laurent
series expansion:

θδ = ∑
n∈Z

tnzn.

Then, from the functional equation σqθδ = zδθδ, we draw the recurrence relations:

∀n ∈ Z , tn−δ = qntn.

¿From this, we get the useful estimation:

tn ≈ |q|
−n2/2δ.

The notation un ≈ vn for positive sequences here means “same order of magnitude up to a polynomial
factor”, more precisely:

un ≈ vn⇐⇒∃ R > 0 : un = O(Rnvn) and vn = O(Rnun).

Now, for any Laurent series F(z) = ∑Fnzn ∈ E⊗C[[z,z−1]] with coefficients Fn in some finite dimensional
C-vector space E, we define its q-Borel transform at level δ by the formula:

B(δ)
q F(ξ) = ∑ t−nFnξn ∈ E⊗C[[ξ,ξ−1]].

This transformation strongly increases the convergence properties; for instance, if F ∈ E ⊗C{z}, then

B(δ)
q F ∈ E ⊗O(C), etc. Since we are interested in analyticity of B (δ)

q F , we introduce conditions on the
order of growth of coefficients, adapted from [15]. Let G ∈ E ⊗C((ξ)) = E ⊗C[[ξ]][ξ−1]. We say that
G := ∑Gnξn ∈ E⊗C({ξ})q,δ if ‖ Gn ‖= O(Rnq−n2/2d) for some R > 0. We say that G ∈ E⊗C({ξ})q,(δ)

if ‖ Gn ‖= O(Rnq−n2/2d) for all R > 0. In the case that, moreover, G has no pole at 0 (G ∈ C[[ξ]]), we
respectively say that G ∈ E⊗C{ξ}q,δ, resp. G ∈ E⊗C{ξ}q,(δ). Thus, we have the obvious equivalences:

F ∈ E⊗C{z} ⇐⇒ B (δ)
q F ∈ E⊗C{ξ}q,δ,

F ∈ E⊗C({z}) ⇐⇒ B (δ)
q F ∈ E⊗C({ξ})q,δ,

F ∈ E⊗O(C) ⇐⇒ B (δ)
q F ∈ E⊗C{ξ}q,(δ),

F ∈ E⊗O(C)[z−1] ⇐⇒ B(δ)
q F ∈ E⊗C({ξ})q,(δ).
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With the notations of equation (8), write G = B (δ)
q F = ∑Gnξn and V = B (δ)

q U = ∑Gnξn (so that Gn =
t−nFn and Vn = t−nUn). Then, multiplying relation (9) by t−n and noting that qn−δt−n = t−(n−δ), we get:

∀n ∈ Z , Gn−δ−Λ(Gn) = Vn.

Multiplying by ξn and summing for n ∈ Z yields:

(ξδId−Λ)B (δ)
q F(ξ) = B (δ)

q U(ξ).

Since U has a positive radius of convergence, B (δ)
q U(ξ) is an entire function. For F to be a convergent

solution, it is necessary that B (δ)
q F be an entire function. We shall now appeal to linear algebra. We first

write A = AsAu and B = BsBu the multiplicative Dunford decompositions. Then A1/δ
u and B1/δ

u are well

defined. In order to define A1/δ
s and B1/δ

s , it is enough to choose a mapping x 7→ x1/δ on C∗ and to apply it to

the eigenvalues. We then put A1/δ = A1/δ
s A1/δ

u , B1/δ = B1/δ
s B1/δ

u and get a linear map L : F 7→A1/δF(B1/δ)−1,
which is a δth root of Λ. Call µδ the set of δth roots of 1 in C.

Lemma 4.7 Let E be a finite dimensional C-vector space, A an endomorphism of E and R be any of the
following algebras of functions: O(C); O(C)[ξ−1]; C{ξ}q,δ; C({ξ})q,δ; C{ξ}q,(δ); C({ξ})q,(δ). Then the

linear operator (ξδ−Aδ) maps injectively E⊗R into itself, its image has a finite codimension δdimE and
there is an explicit projection formula on the supplementary space E⊕·· ·⊕Eξδ−1 of the image:

V 7→ ∑
j∈µδ

d( jA)δ−1Pj(A,ξ)V ( jA),

where Pj(A,ξ) and V ( jA) respectively are the following linear operator and vector:

Pj(A,ξ) =
δ−1

∑
i=0

( jA)i ξδ−1−i, V ( jA) = ∑( jA)nVn ∈ E, (where V = ∑Vnξn is entire).

Proof. - The algebraic part of the proof rests on the following computation:

1 = ∑
j∈µδ

δ( ja)δ−1Pj(a,X), where Pj(a,X) =
Xδ−aδ

X−a
=

δ−1

∑
i=0

( ja)i Xδ−1−i.

¿From this, we draw:

V (ξ) = ∑
j∈µδ

δ( jA)δ−1Pj(A,ξ)V (ξ)

= ∑
j∈µδ

δ( jA)δ−1Pj(A,ξ)
(

V (ξ)−V( jA)
)

+ ∑
j∈µδ

δ( jA)δ−1Pj(A,ξ)V ( jA);

then we note that, since Pj(A,ξ)(ξ− jA) = ξδ−Aδ, the first term of the last right hand side is in the image of
the linear operator (ξδ−Aδ). The second term plainly belongs to the supplementary space E⊕·· ·⊕Eξδ−1.
Then, there are growth conditions on the coefficients to be checked. In the case of O(C); O(C)[ξ−1], they
are standard. In the case of C{ξ}q,δ, C({ξ})q,δ, C{ξ}q,(δ) and C({ξ})q,(δ), they follow from the estimations
given in the proof of lemma 2.9 of [29]. �
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Theorem 4.8 With the notations of section 3.3, equation (8) has a convergent solution if, and only if,

B(δ)
q U( jL) = 0 for all j ∈ µδ. More precisely, the family

(

B(δ)
q U( jL)

)

j∈µδ
∈Matr,s(C)µδ 'Matr,s(C)δ is a

complete set of invariants for analytic classification within the formal class M0.

Solving (8) with θ functions and residue invariants. ¿From the computations in the one level case of
3.3, we see that the only solution of (8) such that condition (5) holds is given by the explicit formula:

Fc(z) =
1

θδ
c

∑
n∈Z

(cδqnId−Λ)−1Vn zn, where V = θδ
cU.

A short computation shows that V = ∑ tpc−pUnzn+p, so that, V0 = ∑ t−ncnUn = B(δ)
q U(c).

In order to compute explicitly the alien derivation in the one level case, it is convenient to normalize the
setting, by requiring that all eigenvalues of A and B lie in the fundamental annulus 1 ≤ |z| < |q| (up to
shearing transformation, this is always possible). We may further decompose the pure blocks zµA and zνB
into their corresponding characteristic subspaces. In other words, we may (and shall) assume here that A
and B are block diagonal, each block Aα (resp. Bβ) have the unique eigenvalue α (resp. β), this lying in the

fundamental annulus. We write Λα,β, Lα,β, Uα,β, and compute the corresponding component ∆̇(δ,α,β)

ξ
(M) of

∆̇(δ)

ξ
(M). Let ξ ∈ C∗ be a prohibited (polar) value of c. This means that one of the matrices (ξδqnId−Λα,β)

is singular, so that ξδqn = α/β. From the normalisation condition, we see that this can occur only for one
value of n. Since residues are actually defined on Eq, one can choose ξ such that the bad value of n is n = 0.
Then, we are to compute:

∆̇(δ,α,β)

ξ
(M) = Resc=ξ

1

θδ
c(a)

(cδId−Λα,β)
−1B(δ)

q Uα,β(c).

Note that the arbitrary basepoint a ∈ C∗ (which provides us with the fiber functor ω̂(0)
a ) appears only in the

theta factor. As in the previous section, we introduce Lα,β such that Lδ
α,β = Λα,β and get, from the same

formulas as before:

∆̇(δ,α,β)

ξ
(M) = Resc=ξ

1

θδ
c(a)

∑
j∈µδ

δ( jα,βL)δ−1(c− jLα,β)
−1B(δ)

q Uα,β(c).

Now, ξ is an eigenvalue of one and only one of the jLα,β, call it Lξα,β. From classical “holomorphic
functional calculus” (see e.g. [26]), we get:

∆̇(δ,α,β)

ξ
(M) = θ−δ(L−1

ξα,β)δLδ−1
ξα,β B(δ)

q Uα,β(Lξα,β).

Recall that, as in loc. cit., the theta factor is the application of a holomorphic function to a linear operator.

Theorem 4.9 Call Φa the automorphism of Matr,s(C)µδ , which, on the (α,β) component, is left multiplica-

tion by θ−δ(L−1
ξα,β). Then Φa sends the q-Borel invariant

(

B(δ)
q U( jL)

)

j∈µδ
to the ∆̇ invariant:

L

ξ
∆̇(δ)

ξ
(M).
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Here is an example similar to that at the end of section 3.1. We take M =

(

α u
0 βz

)

, where α,β ∈ C∗

and u∈C{z}. The slopes are µ = 0 and ν = 1 and the only level is δ = 1. The associated non homogeneous

equation is βzσq f −α f = u, which, in the Borel plane, becomes (βξ−α)B (1)
q f = B(1)

q u, and the obstruction

to finding an analytical solution is the complex number B (1)
q u(α/β). This is also the invariant associated to

the analytical class of M within its formal class.

On the side of resolution with θ and residues, we first get: fc(z) =
1
θc

∑n∈Z(cqn−αβ−1)−1 vn zn, where

v = θcu, then the only non trivial alien derivation, given for ξ = α/β:

∆̇(δ)

ξ
= Resc=ξ fc(a) = Resc=ξ

1
θc(a)

(c−ξ)−1B(1)
q u(c) =

1
θ(a/ξ)

B(1)
q u(ξ).

5 Conclusion

The construction of the alien derivations in the differential and q-difference case are apparently quite dif-
ferent. In fact, it is possible to reformulate things in the differential case to exhibit some analogy; one can
mimick the constructions of the q-difference case: in place of a meromorphic function of a q-direction of
summation in Eq, one gets in the differential case a locally constant function of a direction of summation
in S1 minus a finite singular set, the poles being replaced by “jump points”. The jumps are evaluated by a
non-abelian boundary value: one gets the Stokes operators. The alien derivation are the logarithms of these
operators. There is a slight difference with the q-difference case: in this last case, we took the logarithm
before evaluating the singularity by a residue. We remark that to consider locally constant functions on S1

with a finite set of jumps as the differential analog of meromorphic functions in the q-difference case is in
perfect accordance with the study of the confluence process by the second author in [30].

Our constructions suggest some interesting problems.
1. If we consider the computation of the q-alien derivations ∆̇ξ in simple cases, there appears theta factors
and factors coming from a q-Borel transform. In the simplest cases we can define (pointed) alien derivations
∆̇ξ as operators acting on some q-holonomic power series, and, eliminating the theta factors, we can observe
that this modified q-derivative of a power series is itself a power series: we get a new operator, an unpointed
alien derivation ∆ξ. This suggests the possibility to copy the Ecalle’s definition of alien derivations (cf. [4])
in the q-difference case: a resurgence lattice in the Borel plane is replaced by the set of singularities in the
different q-Borel planes corresponding to the different q-levels δ ∈ N∗ (the q-direction of summation being
fixed), the Ecalle’s analytic continuation paths by summation paths “between the levels” and the boundary
values by residues. In this program it is important to remark that the “algebraic” definition of summability
used in this paper is equivalent to “analytic” definitions in Borel-Laplace style [11, 25, 32]
2. The global classification: we must put together the work of [27] and the results of the present article (at
zero and infinity). It is not difficult to guess what will happen and to describe a “fundamental group” which
is Zariski dense in the tannakian Galois group, but some great problems remain: even in the regular singular
case, we know neither the structure of the global tannakian Galois group (except in the abelian case), nor if
there exists a reasonable “localisation theory” for the singularities on C∗ (between 0 and ∞).
3. The confluence problem. Some simple examples suggest an extension of the results of the second author
(cf. [30]) to the irregular case: confluence of q-Stokes phenomena at 0 to Stokes phenomena. It is natural
to study what will happen with the alien derivations (there is no hope with the pointed q-alien derivations,
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due to the bad properties of theta functions in the confluence processes, but it could work nicely with the
unpointed q-alien derivations).
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[11] Marotte F. and Zhang C., 2000. Multisommabilité des séries entières solutions formelles d’une
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C. R. Acad. Sci. Paris, Ser. I 335 (2002) 899-902.

[26] Rudin W., 1991. Functional analysis, McGraw-Hill.

[27] Sauloy J., 2004. Galois theory of Fuchsian q-difference equations. Ann. Sci. École Norm. Sup. (4) 36
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