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Foreword

There are, if we restrict to functions in a single variable, three big families of
functional equations:

• the differential equations connecting a function f to its successive deriva-
tives f ′, f ′′, . . . ;

• the difference equations connecting a function f to its successive translates
f(x+ a), f(x+ 2a), . . . ;

• the q-difference equations connecting a function f to its successive “dilata-
tions” f(qx), f(q2x), . . . .

They are related to homographies of the Riemann sphere and to their infinitesimal
counterpart. I shall only speak of linear equations with coefficients that are poly-
nomial or, more generally, holomorphic. The subject of the book of Jacques Sauloy
is the third case, that of analytic linear q-difference equations.

Discretizations of differential equations give difference and q-difference equa-
tions with constant coefficients. One is then interested in their discrete solutions.
But it is more interesting to consider their meromorphic solutions. We may for in-
stance consider the solution (n− 1)! of the discrete equation f(n+1) = nf(n), but
it is much more interesting to look at the solution Γ(x) of f(x+ 1) = xf(x), for x
real, like Euler, or better for x complex. J. Sauloy studies in his book meromorphic
solutions1 of q-difference equations.

The history of the subject begins with q-calculus, based on q-deformations of
integers like: n 7→ [n]q = qn−1

q−1 , and of functions: f(x) 7→ f(qx). Later appear
q-special functions. In an enthralling historical prelude, J. Sauloy shows the birth
and development from Fermat and Euler to Watson. The formalized notion of q-
difference equation and the separation of q-calculus and equations only appear late:
in the work of Jackson in 19102. In the case of differential and difference equations,
the notion of operator had been extracted from the gangue of computations by
the alsacian mathematician Louis François Antoine Arbogast more than a century
before, in 1800.

It is interesting to note that, even recently, most experts in q-calculus, q-
orthogonal polynomials, q-special functions or q-combinatorics did not relate those
questions to q-difference equations. Ramanujan does not speak of q-difference equa-
tions, but neither do Gasper and Rahman in the first edition 3 of their “bible” on
q-hypergeometric functions (although the link was clearly established by Jackson

1The “great elders”, in particular G. D. Birkhoff, considered also ramified solutions, but I
proposed around 1990 a change of paradigm by limiting oneself to meromorphic solutions.

2After however works on functional equations in France at the end of XIXth century, in
particular by Picard and Poincaré, but with a different point of view.

3The expression “q-difference equations" appears marginally in two places in the second
edition.
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xii FOREWORD

in his work on Heine’s q-series . . . ). Richard Askey signalled the importance of the
point of view of q-difference equations, but rather tardily. J. Sauloy shows in his
book how that point of view allows one to transform the jungle of q-calculus and
q-special functions into a harmonious garden à la française.

When I was a student in the Sorbonne in Paris, at the beginning of the sixties,
our masters thought that the history of analytic differential equations had come to
an end in the late twenties4. But there was a vigorous revival at the beginning of
the seventies, with in particular a return to Birkhoff, whose works on the subject
had been completely forgotten. New concepts and techniques appeared (or reap-
peared): Riemann-Hilbert correspondence, Newton polygons, Gevrey asymptotic
expansions, k-summability, index theorems, Stokes multipliers, sheaf cohomology,
differential Galois theory, density theorems . . . . An essential point is the treatment
of irregular equations. Later a modern parallel theory of q-difference equations
followed5. The goal of the book by J. Sauloy is to present the foundations of that
theory. The book contains in particular the classification of regular singular equa-
tions by crossing analytic and Galois theoretic points of view. There also is an
introduction to the irregular case, which, as in the differential case, is much more
difficult. Thus appear the notions of q-asymptotics, summability and q-Stokes phe-
nomenon6.

Recently some q-difference equations (possibly non linear, like the q-analogues
of Painlevé equations) appeared in a large number of works in theoretical physics7.
For instance, theoretical physicists think that a “q-deformation” is involved when
going from “two dimensional conformal field theory” to the theory in dimension
three8. Some q-difference equations also appear in many works by Andrei Ok-
ounkov, in relation with various subjects: “enumerative geometry, string theory,
mirror symmetry, quantum gravitation”.

Given the important development of q-difference equations in various domains
of mathematics and theoretical physics, the lack of a basic work, crossing various
approaches, was a huge lacuna. Everything was scattered in various works or re-
search articles, including the “classical” basics9. The book by J. Sauloy perfectly
fills this gap. I am convinced that it will become an essential tool for a whole com-
munity of researchers verging on the q-world in their work, and a very good entry
point for students. it should establish itself over the years as the reference book on
the subject.

Jean-Pierre Ramis, member of the French Academy of Sciences

4It is clearly the point of view of J. Dieudonné in his “Abrégé d’histoire des mathématiques”.
5The roots of the modern theories of differential and q-difference equations lie in great part

in a 1913 article by Birkhoff who tackles the three “sister theories” of differential, difference and
q-difference equations from a point of view which J. Sauloy calls Riemann-Hilbert-Birkhoff theory.

6The author announces that those subjects (and others . . . ) will be deepened in a companion
work in preparation.

7One even meets in some works the q-Stokes phenomenon.
8According to Beem, Dimofte and Pasquetti “the natural 3D analogues of the differential

equations whose solutions determine the partition function in two-dimensions are q-difference
equations”.

9There did not even exist for q-differences the analogue of Batchelder’s 1930 book for
differences.



Preface

In 2003, Jean-Pierre Ramis (of whom I had been a student), Changgui Zhang
(who also had been a student of Ramis), Lucia Di Vizio (who had been a student
of Yves André) and myself together wrote a short survey article on q-difference
equations for “La Gazette des Mathématiciens”, a publication of the Société Math-
ématique de France. The theory of q-difference equations had, in the preceding
years, known a revival under (notably) the impulsion of such as Jean-Paul Bézivin,
Hidetaka Sakai, Marius van der Put, Michael Singer, Yves André, and mostly Ramis
himself.

Following our article, Yves André suggested that a team of valiant involved
mathematicians should write a modern book on the subject. So the same group,
under the wise direction of Ramis, begun to prepare it. After (I believe) two
years of false starts and procrastination, the project was abandonned. The life of
“enseignants-chercheurs” in France does not favour long term projects. Moreover,
as Hardy said, “young mathematicians should prove theorems, old mathematicians
should write books”. (It is true that in the meantime I produced a book , but it was
a more or less direct adaptation of courses I had given on very classical matters.)

Four years ago, the beginning of my retirement and the Covid pandemic com-
pelled me to resume the project. But diminution of task force (to 25 %) and
difference of temper (see below) make the result quite different of what it would
have been. An obvious reason is my narrower domain of expertise. The scope of
the resulting book is certainly narrower to the same extent. Another one is that, as
“enseignant-chercheur”, I probably have a bigger proportion in me of “enseignant”
and a lesser of “chercheur” than my worthy colleagues. So the book is certainly more
didactic and less systematic that it could have been. I favour examples, motivation,
analogies, historical reminders, exercises in numbers, redundancy10 . . . Besides, all
along, I wrote this book with the “Graduate Studies in Mathematics” in mind, until
the AMS assessed that it should rather belong to the “Mathematical Surveys and
Monographs” series.

Also, I am more attracted by tools and techniques than by problems. In some
sense, in Marx classification, this book belongs to the sector I (where are produced
the instruments of production). I have been (unhappily ?) encouraged in this
direction by my activity of referee for many interesting articles in the last two
decades, which tried to use the nascent modern theory of q-difference equations
but revealed misunderstandings of its basics, although the attempt at using it was

10Curious readers may notice that in many places my presentation of facts is longer than in
the original articles they come from. Let me quote Johannes Huebschmann in the december 2023
issue of AMS Notices: “The diligent reader will notice that the proof is complete i.e., no detail
is left to the reader. It is an instance of the common observation to the effect that mathematics
consists in continuously improving notations and terminology.” (Emphasis in the source.)

xiii



xiv PREFACE

plainly justified and the rest of the articles was valuable. The reader will easily spot
other biases of mine (no Cauchy integral, function theory almost entirely through
power series, etc).

For all the shortcomings of this book I can only propose a compensation: a
kind of “companion volume” with broader scope and at a higher level of sophistica-
tion will be produced within a reasonable delay (say two years), tackling important
omissions (q-asymptotics and summation, q-special functions, q-Painlevé equations,
various aspects of Galois and of moduli theory, phenomena related to non integral
slopes, effective methods, solutions of q-difference equations vs solutions of dif-
ferential equations . . . ); this will be a collective work by Shaoshi Chen, Yousuke
Ohyama, Jean-Pierre Ramis, Julien Roques, Changgui Zhang and myself.

There is another shortcoming of the book11 for which I can only hope that
future work (presumably by others) will bring reparation. During the decades I
devoted to q-difference equation theory, I tumbled upon a mass of facts for which
an underlying order could be guessed, and here, I have tried to make that order
explicit. There are quite a few places12 where I think more order can be expected.

Paying dues. It is time to thank those who helped so much: above all, Jean-
Pierre Ramis, of course; my colleagues, friends and coauthors Lucia Di Vizio,
Charlotte Hardouin, Yousuke Ohyama, Julien Roques and Changgui Zhang; my
colleagues, friends and commensals Anne Duval, Michèle Loday, Claudine Mitschi,
Vadim Schechtman and Joseph Tapia; and a special word for Yannis with whom it
all begun.

I should add the six anonymous colleagues who read the manuscript and made
helpful suggestions. And, above all, “my” AMS editor, Ina Mette, who gave me all
help and encouragement I needed all along this lengthy affair.

Dedication. I dedicate this book to Yannis Varouchas (1950-2003), also known as
Jean Varouchas. Of greek origin, he came to study in France in 1969, when I met him
in the “hypotaupe” of André Warusfel. When we started (under the guidance of Georges
Maltsiniotis) to meet “true math”, he expressed strong dislike of mathematics based on
arrows (as he said), but later was reconciled with algebraic geometry by the book of
Griffiths and Harris. As a devoted teacher, he despised the formalist tendency and said
that after three years in University, french students only knew three functions: exp, log
and f . In the last years before his untimely death, he caught the q-disease, which was a
happy event for me since it allowed us to meet anew.

Obituary. Bernard Malgrange (1928-2024) passed away on january 5th, just after I
had finished writing this book. I reproduce further below the few lines (in french, but it
does not seem to matter too much) received along with the announcement; but no doubt
much more information will be published in the coming monthes.

Bernard Malgrange had a tremendous impact on the theory of complex differential
equations, thus, indirectly, on the theory of q-difference equations. Quite a few essential
results in this book were obtained trying to adapt work of Malgrange: this is of course

11As for what the book is on and what it isn’t, see more details in the introduction.
12To name but a few: it seems to me that the mixing of filtration by the slopes and graduation

by the exponents is not totally clarified by the use of the Grothendieck group in chapter 10; the
phenomenon of confluence (chapter 11) could be proved more neatly using holomorphic functional
calculus; and the determination of the fuchsian local Galois group in chapter 13 could somehow
be illuminated by the theory of decomposition of tensor products of irreducible representations of
linear groups; last, the possibility to attach a vector bundle to each q-difference system (chapter
7) is clearly under-exploited. All this is beyond my forces !
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true of the q-analogues of Birkhoff-Malgrange-Sibuya theorems, but also actually of many
things in chapters 7 to 10. More recently, his contribution to non linear differential Galois
theory received a beginning of extension to q-differences in the work [95] by Anne Granier.

Malgrange never took a deep interest in q-difference equations, but, as a close friend
of Ramis, he kept informed about them. He was the referee for my first articles and
displayed a patience little deserved by them. His very professional attitude was a great
help to me.

Quotation:
“Né le 6 juillet 1928 à Paris, ancien élève de l’Ecole Normale Supérieure, Bernard Mal-
grange a été Attaché de Recherche au CNRS, Maître de Conférences et Professeur à
l’Université de Strasbourg et Professeur à la Faculté des Sciences d’Orsay avant de rejoin-
dre l’Université de Grenoble en 1969, d’abord en tant que Professeur et ensuite comme
Directeur de Recherches au CNRS. Membre de l’Académie des Sciences depuis 1977, ré-
cipiendaire de nombreux prix pour ses travaux profonds sur les équations aux dérivées
partielles, la géométrie différentielle, les singularités de fonctions analytiques et la théorie
algébrique des équations différentielles, il a participé très largement au rayonnement de
l’Institut Fourier dans le monde mathématique. Le théorème de préparation différentiable
restera pour toujours associé à son nom.”





Introduction

0.1. General orientation of this book

The greatest single impetus in the theory of q-difference equations was probably
Birkhoff’s article [22]. After some sleepy (though not totally void) decades, the
theory knew a revival at the very end of the previous millenium. This book revolves
around one of the active threads of that revival during a quarter of a century.

0.1.1. Scope. There are many excellent books and survey articles about q-
special functions (and also some about q-calculus and about difference algebra).
This book is not one of them. It stands, in relation to the former, in more or
less the same position as would a book on (linear, complex, analytic) differential
equations with respect to a book on (classical13) special functions.

A theoretical approach is pursued. Functional equations are a powerful way
to understand functions, and they in turn can be understood through underlying
structures (more on this in 0.1.3). We shall try to detail and explain those struc-
tures as clearly and explicitly as possible, with many examples and exercises of
application; however neither numerical nor symbolic algorithms will be displayed.

0.1.2. Origins and specificities of q-difference equation theory. While
the Big Bang of q-difference equation theory is [22], the history of q-calculus goes
back at least to Euler, maybe even to Fermat (see chapter 1). Apart from an
untimely forerunner in Euler (the “fundamental trick”, see 1.2), the first conscious
use of q-difference equations seems to be due to Jackson [118] as a way to study
Heine’s basic hypergeometric series. Yet, according to Birkhoff’s historical article
[23] (see in particular p. 639), the Founding Fathers are Carmichael, Adams,
Birkhoff himself, Trjitzinsky . . .

Although in [22] Birkhoff puts “the three sister theories” of differential, differ-
ence and q-difference equations as far as possible on the same ground, he admits
(p. 640 of [23]) that the latter is simpler. This is true and important and it can be
understood at least in two ways:

• Any non trivial analytic automorphism of the Riemann sphere is a Mobius
transformation, thus conjugate either to the translation operator x 7→ x+1
(if it has a single fixed point) or to some dilatation operator x 7→ qx, q ̸=
0, 1 (if it has two fixed points). The former case is clearly a degeneration
of the latter (the fixed points merge).

• Now look at the action of said automorphism on S\{fixed point(s)}. The
quotient of C by the action x 7→ x + 1 is a cylinder, an open Riemann
surface, while the quotient of C∗ by the action x 7→ qx is a torus, a

13Throughout his book, I will generally use the word “classical” to qualify concepts and
techniques related to ordinary differential equations, as opposed to q-difference equations.

xvii



xviii INTRODUCTION

compact Riemann surface. The latter is obviously an easier playground
for complex analysis.

If we prefer a comparison with differential equations, we note that the relevant
operator is an infinitesimal automorphism, the notion of fixed point is unclear; and
the closest we get to a quotient is the “Malgrange circle of directions” S1 (see 15.3.3
for explanation), not even a Riemann surface, thus not such a nice playground for
complex analysis.

Compared to q-difference theory, plain difference theory is much more compli-
cated and we shall have nothing to say about it (look at [22, 72, 114, 236] to get a
feeling of how much more complicated it can be !). However, if we rather compare
q-difference theory to differential equation theory, it offers two striking properties
which make life easy:

• The domain of definition of local solutions can usually be expanded through
q-dilatations and most equations admit uniform solutions over the whole
of C∗, which is of course not to be dreamed of in classical theory; see for
instance 5.3.2.2, and, for a conceptual explanation, Praagman’s theorem
in 7.3.

• As for the local study, all analytic q-difference operators admit an ana-
lytic factorisation, while in the differential or difference case only a formal
factorisation is possible. We call this fact Adams lemma, see 5.3.2, al-
though it seems to have been independently rediscovered by Birkhoff and
Guenther, [24], see chapter 15.

Yet, classical theory of (linear, complex, analytic) differential equations is a reliable
guide (we frenchmen say “Fil d’Ariane”) in that new maze, while trying to stay con-
scious at all times of similarities and disimilarities. A notable thread originating
in classical theory is (under any of its thousand guises) Riemann-Hilbert corre-
spondence (see chapter 12), which we shall rather call Riemann-Hilbert-Birkhoff
correspondence since Birkhoff has renewed it so much in [22].

Remark 0.1. In that respect, I must mention that the frequent reference to my
book [211] just means that I presented there very classical results (none of them
due to me !) but in a form that suits rather closely the points of view of the present
book.

Exercise 0.2. One parallel is that differential equation theory is additive while
q-difference equation theory is multiplicative. Try to find examples of that in the
text. (For instance: definition of basic functions, of exponents, properties of slopes,
Fuchs relation . . . ).

0.1.3. Technical bias.
Thus, after due respect has been paid to the algebraic verifica-
tions in their various shapes, I am still convinced again all Puritan
doctrines that the analytic method is the least artificial, affording
the deepest insight and best in keeping with our program: to solve
concrete problems by means of general ideas which shed light upon
a much wider range of mathematical facts that were needed for our
immediate purpose.

Hermann Weyl, “The Classical Groups”, chap. VII, §7.
As can be guessed from the previous considerations (and the above quotation),

we favour a wholly transcendental approach. The course will involve only complex



0.1. GENERAL ORIENTATION OF THIS BOOK xix

analytic linear q-difference equations14 and for them it seems that the strongest
results have been obtained through function theoretic methods, appropriately sea-
soned with an adequate proportion of algebra.

A fundamental restriction is that |q| ̸= 1. The case |q| = 1 is much more
complicated and not so much developed (see however for instance [58] for a signif-
icant advance and, for example, [225] for the usefulness of that case). We avoid
the arithmetic theory [56, 57] and the more algebraic approach of [236] based on
Picard-Vessiot theory (this, however, should be fixed later - see herebelow 0.1.4). To
return to our mentioned restriction, and to make it more precise, we shall require:

0 < |q| < 1.

The case |q| > 1 boils down to the previous one through easy procedures which will
be commented later in the course of the text.

Although the founding fathers used multivalued functions, we shall take ad-
vantage of the possibility explained above in 0.1.2 to totally avoid them and work
with uniform functions. This idea originates in the programmatic text [181] by
Ramis (itself related to a suggestion of Birkhoff at the end of [22]). (More will be
said on that choice in 12.1.1.)

When tackling global problems, the base field will be C(x). When tackling
local matters, it will be either C({x}) or C((x)). It is possible to work over rings
like C{x}, C[[x]] or C[x, x−1] but this leads to unnecessary algebraic complica-
tions (torsion modules, etc) in our setting - although it is plainly appropriate15

for instance when going beyond one variable as for instance Sabbah does in [203].
However, it is true that our choice to avoid q-difference rings or algebras sometimes
leads to overelaborate explanations.

We have founded the algebraic part of the theory on q-analogues of differential
modules, and, to a lesser extent, of D-modules (see chapter 8). We did not find
it necessary to introduce “discrete connections” of the kind used for instance by
Tarasov and Varchenko in [230].

0.1.4. A projected “Companion volume”. Given all the important topics
that we fail to adress, it was decided (along with a few colleagues working in the
domain) that we would prepare a kind of “Companion volume” (in the sequel, to
be referred as [CV]) at a higher level of sophistication and tackling the following
matters:

(1) Asymptotics and summation theory for irregular equations (here barely
touched in chapters 14 and 15).

(2) Important q-special functions, notably:
• q-hypergeometric functions,
• Rogers-Ramanujan continued fractions.
• orthogonal polynomials,

Note that the first two items do appear in the book at various places as
illustration (and we initiate a study of the first in chapter 4).

14There is a tradition originating, it seems, in physics, which considers difference and q-
difference equations as some kinds of recurrence relations: see e.g. [175] or, to some extent, [89]
and [124]. Here, we stick to the functional interpretation and enjoy the full power of function
theory.

15A serious treatment of holonomy also requires base rings or algebras, so our baby study in
3.2.4 is really a low level one.
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(3) q-Painlevé equations, from the analytic and from the geometric point of
view.

(4) Local classification and Galois theory for irregular equations with arbi-
trary slopes (in chapters 14 and 15, we solve the corresponding problems
for equations with integral slopes only; the general case is more compli-
cated).

(5) Comparison of the present function theoretic approach to Galois theory
with the more algebraic Picard-Vessiot approach.

(6) Effective methods, procedures and algorithms in resolution, classification
and Galois theory.

(7) Simultaneous solutions of q-difference equations and of differential equa-
tions, hypertranscendence, simultaneous solutions of q-difference equa-
tions for more than one q.

0.2. Contents

Broadly speaking, the book has three parts. Chapters 1 to 4 are meant as an
initiation to the q-difference world. Chapters 5 to 10 are the technical heart, they
display the tools of the trade. Chapters 11 to 15 aim at substantial applications.
(Of course, the distinction is not so clear-cut: those last five chapter also display
important tools and chapter 4 already tackles significant applications.) There are
appendices (see 0.3.1.1). At the end of the introduction (from 0.3 on) we pro-
vide a practical guide to the book, including organisation, prerequisites, notations,
conventions, etc.

0.2.1. Initiation. Chapter 1 contains a series of historical examples predating
the real period of q-difference equations; so, in some sense, they are prehistorical.
They are mainly intended to get the reader accustomed to that Brave New World
and its rich flavours; but they do come with explicit calculations and arguments.

Chapter 2 introduces the “basic bricks”, i.e. the most elementary q-special func-
tions needed to solve all q-difference equations. They rest on classical special func-
tions, for which reminders are provided in appendices A and B. We also begin
there an initiation to the role of sheaves and vector bundles in q-difference equation
theory (see why further below in 0.2.4).

Chapter 3 introduces elementary calculation techniques from difference algebra
and from q-calculus.

Chapter 4 addresses equations of order 1 (in this way, it is but an extension
of the previous chapter) and equations of order 2; and there, it already involves
significant applications, like basic hypergeometric series. In order to emphasize the
specificities of the latter, appendix C summarizes the basics on classical hyperge-
ometric functions. We go on with the initiation to the role of sheaves and vector
bundles (the real thing will start in 7.3 and in 9.3).

0.2.2. Tools of the trade. Chapter 5 adapts the classical methods inherited
from the founding fathers to our framework based on uniform functions (in this
way, it rests on chapter 2). It also takes advantage of algebraic methods from
differential and difference algebra (noncommutative polynomials) to expound our
first important theorem, Adams lemma; and to introduce in his first avatar an
essential tool, the Newton polygon.
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Chapter 6 originates in work of Bézivin and of Ramis. It is more “modern”
than chapter 5 in that it replaces resolution by the measure of obstructions to
the possibility of resolution. It uses some functional analysis and very elementary
homological methods, all recalled in appendix D.

Chapter 7 displays the classical method of vectorialisation of scalar equations,
well known in the study of differential equations. It is probably due (once again
!) to Birkhoff. The complete understanding of relations between scalar equations
and systems also requires some elementary homological methods, summarized in
appendix E. It is also the right place to start to systematize the use of sheaves
of solutions and the attached vector bundles (which have, actually, already been
touched upon in special cases).

Chapters 8, 9 and 10 are, in my opinion, the technical heart of our toolbox. First
we start the heavy use of linear methods in chapter 8 (modules over noncommutative
rings), and this requires some linear and multilinear algebra, see appendix F. We
complete it with a more detailed algebraic study in chapter 9. Then we apply
it to elucidate the formal and analytic structure of (complex, analytic, linear) q-
difference equations in chapter 10.

0.2.3. Applications to “the real world”. As in the classical case, there
is a first division of the world between regular singularities (when solutions have
moderate growth; they come here under the heading of fuchsian equations and
systems) and irregular singularities.

In our framework, the only possible local studies are at 0 and at ∞ (which boils
down to the previous one); this is explained in chapters 11 (local study of fuchsian
systems) and 12 (global study), where the original contribution of Birkhoff [22]
is modernized, systematized and extended. This is then completed by the Ga-
lois theory in chapter 13, where we begin to require some more sophisticated tools
(tannakian duality) recalled in appendix G. Chapter 12 also involves an opening to-
wards a non linear theme, that of q-Painlevé equations, which will be more seriously
adressed in [CV].

In chapter 14 we treat irregular scalar equations. The scalar form is appropriate
for the finer analytic theory, but we unhappily can only touch upon it here: this will
be hopefully compensated by [CV]. Like the following one, this chapter uses some
cohomology of sheaves, which is summarized in appendices H (abelian cohomology)
and I (non abelian cohomology).

Chapter 15 adresses irregular systems, which are an appropriate framework for
classification and Galois theory, so we require again information from appendix G;
but classification also requires sheaf-cohomological methods from appendices H and
I.

0.2.4. Why the fuss about vector bundles and sheaves. Theorems on
factorisation of holomorphic matrices (by Hilbert, Plemelj, Birkhoff, Cartan . . . )
have been for a long time associated to the study of functional equations. Röhrl
[194] formulated and solved a Riemann-Hilbert problem along those lines in terms
of vector bundles (also see [86, chap 3 §31], [173], [236, 12.3.1], [211, chap 12,
theorem 12.8]). So the use of holomorphic vector bundles here seems unavoidable.
On the other hand, it seems to me that their elementary study is easier in terms
of the associated locally free sheaves, since the formalism of sheaves offers so much
flexibility. Whence the sections 7.3 and in 9.3 and the appendices H and I.
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0.2.5. The appendices. Their content has been described above. Their role
is explained in 0.3.1.1.

0.3. Some practical tips

0.3.1. Organisation and mode d’emploi .
0.3.1.1. Prerequisites. The main prerequisites are general algebra and analysis

as they are taught in the first three years of University (or College if you prefer).
However, specific higher level math is needed at some places, most of the time at
the level of fourth year. I expect that each particular reader has been confronted
to some of them, but not all.

Therefore, each time it is so, I have tried to summarize it in the form of an
appendix, like I usually do when delivering the corresponding graduate course. The
appendix is meant to avoid the necessity to dwell on the subject, by providing a
user-friendly access to terminology and results.

0.3.1.2. Exercises. Two kinds of exercises are presented: some serve as an il-
lustration (e.g. examples, counterexamples, explicit calculations, etc). Some may
propose deepening or extensions of the main text. Many solutions or hints will
be gradually posted on the AMS webpage related to this book during the year
following its publication.

0.3.1.3. Indexes. I have prepared a terminological index, a notation index and
an index of names. They take in account the main text only, not the appendices.
The terminological index only mentions terms special to the book, terms of gen-
eral mathematical use are listed further below in 0.4.2. The index of names men-
tions names only for relevant contributions, for instance expressions like “Riemann
surface”, “Galois groups” and “Hilbert theorem 90” do not give rise to items like
“Galois”, “Riemann” or “Hilbert”. I found no definite rule for the notation index,
which is maybe a mess (containing at times entire formulas . . . ): I only hope that
a desperate reader may find at times more convenient to browse through 12 pages
of symbols than to browse through more than 650 pages of the book.

0.3.1.4. Errata. I cannot hope to have corrected all the typographical and more
substantial errors that appeared in the long process of making this book. A list of
errata will be maintained on the webpage mentioned above.

0.4. General notations and conventions

0.4.1. Some general conventions. The end of a proof, of its absence, is
marked by the symbol □.
Notation A := B means that the term A is defined by formula B.
New terminology is written in emphatic style when first defined. Example:
The q-difference module M is said to be fuchsian (at 0) if it is pure isoclinic of
slope 0, i.e. if S(M) = {0}.
Note that a definition can appear in the course of a theorem, an example, an
exercise, etc.
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We use commutative diagrams. For instance, the commutativity of the follow-
ing diagram means that ϕV ◦ ρUV = ρ′UV ◦ ϕU :

F (U)
ϕU //

ρU
V

��

F ′(U)

ρ′U
V

��

F (V )
ϕV

// F ′(V )

0.4.2. Some general notations.
0.4.2.1. Sets of numbers. • C,R,Q,Z,N: complex, real, rational numbers;

then rational, natural integers.
• C∗,R+,R

∗
+: non zero, non negative, strictly positive.

• U, µn, µ
∗
n, µ∞: modulus one, nth root of unity, primitive nth root, arbitrary root.

• ℜ,ℑ: real and imaginary part. (The image of a map is denoted Im f .)

0.4.2.2. Spaces. • S,C∞: Riemann sphere, the same deprived of 0.
• H: Poincaré half-plane (defined by ℑz > 0).

• D(a,R),
◦
D(a,R),

•
D(a,R), ∂D(a,R): closed, open, punctured disk, circle.

•
◦
C(r,R), C(r,R), C(r,R) open, closed, semi open annulus r < |z| ≤ R.

• Λ,Λτ ,EΛ: a lattice of C, the lattice Z+ Zτ , the quotient C/Λ.
• div, divV : divisor of a function, of its restriction to V .
• deg, ev: degree of a divisor, evaluation (if defined on an abelian group).

0.4.2.3. Sets of functions. • O(U),O(U, a),M (U),M (U, a) holomorphic func-
tions and germs, meromorphic functions and germs.
• C[[x]],C{x},C((x)),C({x}) rings of formal and analytic series, their quotient
fields.
• C[x],C(x),C[x]d polynomials, rational fractions, polynomials of degree ≤ d.
• va(f),Resx=a valuation or order of f at a, residue.
• f is regular at a if va(f) = 0.
• ∥f∥K : maximum of |f(x)| on compact K.
• D := d/dx, δ := xd/dx: plain and Euler differential operator.
• Tnf, Tnf : truncatures of series, so that Tnf − Tnf is the xn term.

0.4.2.4. Matrices, linear algebra. • LK(V,W ),LK(V ),GL(V ): K-linear maps,
endomorphisms, automorphisms.
• Matm,n(K),Matn(K),GLn(K): corresponding sets of matrices.
• D∗

n(K),Diag(c1, . . . , cn): invertible diagonal matrices (set, individual).
• Sp(A), [A,B]: spectrum16, commutator AB −BA.
• Sing M(x): singular locus, i.e. where M is undefined or not invertible.

•
�
C1 · · · Cn

�
,



L1

...
Lm


: denotations of a m× n matrix by columns, by lines.

• |||A|||: matricial norm associated to a norm ∥X∥ on Cn.

16Sometimes, the spectrum is seen as a plain set and for instance, writing 0n the null n× n

matrix, Sp 0n = {0}. Sometimes, it is seen as a multiset (elements have multiplicities) and then
Sp 0n = {{0, . . . , 0}} (counted n times).
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0.4.2.5. Categories,sheaves and vector bundles. • Ob(C ),HomC (X,Y ), IdX : class
of objects, sets of morphisms, identity morphisms in a category.
• ;: funny arrow reserved for functors acting on objects.
• VectfC,RepC(G),RepfC(G),Reprat(G): category of finite dimensional complex
vector spaces, of complex representations, of finite dimensional complex represen-
tations, of rational representations.
• lim

←−
, lim
−→

: inverse and direct limit.
• F ,F: locally free sheaf and associated bundle.
• ρUV ,Fa,Fa: restriction map, stalk (or fiber) for a sheaf, for a vector bundle.

0.4.2.6. Miscellani. • n >> −∞, n >> 0, n << a, . . .: for n bounded below,
for n big enough, etc.
• {{c1, . . . , cn}}: multiset, or bag (of roots, of eigenvalues . . . ).
• Empty sum is 0; empty product is 1 or In, etc; min ∅,max ∅ respectively biggest
or smallest possible value.
• ≃,∼, cl,≈: isomorphism, equivalence relation, equivalence class, ad hoc relation
of “similarity”.
• [Γ,Γ],Γab,Homgr,Homgrtop,Γ

∨: commutator subgroup, abelianized, set of mor-
phisms of groups, of continuous morphisms, proalgebraic group of morphisms to
C∗.
• Kσ, Rσ: fixed subfield, subring under an automorphism.
• EG fixed subset of E acted upon by the group G.

0.4.2.7. The q-world. • q ∈ C∗ s.t. |q| < 1 but for some explicit exceptions.
• ≡: most of the time congruence modulo qZ in C∗.
• τ ∈ H s.t. q = e2iπτ , qα := e2iπτα, qR := e2iπτR.

• σqf(x) := f(qx), Dq :=
σq − 1

(q − 1)x
, δq :=

σq − 1

q − 1
.

• Lσq
(V,W ): σq-linear maps, i.e. group morphisms s.t. f(ax) = σq(a)f(x).

• Eq := C∗/qZ: group and Riemann surface, π : C∗ → Eq, c 7→ c.
• Cq := C(|q| , 1): fundamental annulus.
• c = qϵ(c)c, ϵ(c) ∈ Z, c ∈ Cq.
• [a; q] := aqZ, [a; q]0 := aqN, [a; q]∞ := aq−N: discrete q-spirals and half q-spirals.

• (a; q)n, (a; q)∞, [α]q, [α]!q,

�
n
l

�

q

: q-Pochhammer symbols (in two guises), q-numbers,

q-factorials, q-binomial coefficients (section 3.3).
• θq, eq,c, ℓq: q-theta function, q-character,q-logarithm (chapter 2).
• A∼

K
F [A] := (σqF )AF−1, where F,A ∈ GLn(K): gauge tranformation and equiv-

alence over K.


